GBCS SCHEME

USN

17EE34

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Draw a double ended clipper circuit and explain its working principle with transfer characteristics. (07 Marks)
 - b. Draw and explain the working of clamper circuit which clamps the positive peak of a signal to zero. (07 Marks)
 - c. With suitable graph, explain the significance of operating point.

(06 Marks)

OR

- 2 a. Derive the expression for stability factor for fixed bias circuit, with respect to I_{co} , V_{BE} and β . (07 Marks)
 - b. A voltage divider biased circuit has $R_1=39k\Omega$, $R_2=82k\Omega$, $R_c=3.3k\Omega$, $R_E=1k\Omega$ and $V_{CC}=18V$. The Silicon transistor used has $\beta=120$. Find Q-point and stability factor.

(08 Marks)

c. Calculate the Q point values (I_c and V_{CE}) for the circuit given in Fig Q2(c).

he circuit given in Fig Q2(c). (05 Marks)

100Ka \$10K12

Module-2

3 a. State and prove Millers theorem.

(08 Marks)

- b. Starting from fundamentals define h-parameters and obtain an h-parameter equivalent circuit of common emitter configuration. (08 Marks)
- c. Compare the characteristics of CB, CE and CC configurations.

(04 Marks)

(08 Marks)

OR

- 4 a. Derive an expression for input impedance volt gain, current gain and output impedance for an emitter follower circuit using h-parameters model for the transistor. (08 Marks)
 - b. For the transistor connected in CE configuration, determine A_v, A_I, R_I and R_o using complete hybrid equivalent model.

Given $R_L = R_{s=} = 1k\Omega$, $h_{ie} = 1k\Omega$, $h_{re} = 2\times10^{-4}$, $h_{fe} = 100$ and $h_{oe} = 20\mu\text{A/V}$ c. A transistor in CE mode has h-parameters

 $h_{ie}=1.1k\Omega$, $h_{re}=2\times10^{-4}$, $h_{fe}=100$ and $h_{oe}=25\mu\text{A/V}$. Determine the equivalent CB parameters. (04 Marks)

Module-3

- Draw the circuit of Darlington emitter follower. Derive the expression for current gain using 5 (08 Marks) its ac equivalent circuit.
 - What are the advantages of negative feedback in amplifiers? Explain briefly. (06 Marks)
 - c. For the voltage series feedback amplifier, derive an expression for output impedance.

(06 Marks)

- Explain the need of cascading amplifier. Draw and explain the block diagram of two stage 6 cascade amplifier.
 - b. A given amplifier arrangement has the following voltage gains $A_{V_1} = 10$ $A_{V_2} = 20$ and $A_{v_3} = 40$. Calculate the overall voltage gain and determine the total voltage gain in (06 Marks) dBs.
 - An amplifier with negative feedback has a voltage gain of 120. It is found that without feedback an input signal of 60mV is required to produce a particular output, whereas with feedback the input signal must be 0.5V to get the same output. Find voltage gain (A_{V}) and β (06 Marks) of the amplifier.

Module-4

- a. Derive an expression for frequency of oscillations in Wien bridge' oscillator. (08 Marks) 7
 - b. Explain the operation of class B push pull amplifier. Prove that the maximum efficiency of (08 Marks) class B configuration is 78.5%.
 - c. A crystal has following parameters. $L=0.3344H,~C=0.065pF,~C_m=1pF$ and $R=5.5k\Omega$. Calculate: i) Series resonance frequency ii) Parallel resonance frequency. (04 Marks)

- Explain the operation of class A transformer coupled power amplifier and prove that the 8 (08 Marks) maximum efficiency is 50%.
 - b. A class B push pull amplifier operating with $V_{CC} = 25V$ provides a 22V peak signal to 8Ω load. Calculate circuit efficiency and power dissipated per transistor. (06 Marks)
 - Explain the principle of operation of oscillator and the effect of loop gain (AB) on the output (06 Marks) of oscillator.

- With the help of neat diagram, explain the working and characteristics of N-channel JFET. 9 (08 Marks)
 - Determine Z_I, Zo and A_v for IFET common source amplifier with fixed bais configuration (08 Marks) using AC equivalent small signal model. (04 Marks)
 - Write down the differences between BJT and JFET.

- With the help of neat diagrams, explain the construction, working and characteristics of 10 (10 Marks) N-channel depletion type MOSFET.
 - Write down the differences between MOSFET and JFET.

(04 Marks)

For the circuit given in the Fig Q10(c), determine: i) Input impedance ii) Output impedance (06 Marks) and iii) voltage gain.

